MATH 504 HOMEWORK 7

Due Monday, November 5.

Problem 1. (The Δ -system lemma) Suppose that D is a set, and $\{d_{\eta} \mid \eta < \omega_1\}$ is a family of distinct finite subsets of D. Show that there is an uncountable $I \subset \omega_1$ such that $\{d_{\eta} \mid \eta \in I\}$ forms a Δ -system, i.e. for some kernel d, for all $\eta < \xi$ both in I, $d_{\eta} \cap d_{\xi} = d$.

Problem 2. Let M be a transitive model of ZFC and $\mathbb{P} \in M$ be a poset. Suppose that $p \in \mathbb{P}$ is such that $p \Vdash "\dot{f} : \lambda \to \tau$ is a function".

- (1) Show that for every $\alpha < \lambda$, $\{q \mid \exists \gamma \in \tau(q \Vdash \dot{f}(\alpha) = \gamma)\}$ is dense below p.
- (2) Let $B = \{\gamma < \tau \mid (\exists q \leq p)(\exists \alpha < \lambda)(q \Vdash \dot{f}(\alpha) = \gamma)\}$. Show that if $\sup(B) < \tau$, then $p \Vdash$ "ran (\dot{f}) is bounded".

Problem 3. Prove (in detail) that if \mathbb{P} preserves cofinalities, then \mathbb{P} preserves cardinals.

Problem 4. Suppose that \mathbb{P} is a poset, $A \subset \mathbb{P}$ is a maximal antichain, $\phi(x)$ is a formula, and $\langle \tau_p \mid p \in A \rangle$ are \mathbb{P} names such that for all $p \in D$, $p \Vdash \phi(\tau_p)$. Show that there is a \mathbb{P} name τ , such that $1_{\mathbb{P}} \Vdash \phi(\tau)$.

We say that σ is a *nice name* for a subset of ω , if for all $n \in \text{dom}(\sigma)$, $\{q \mid \langle n, q \rangle \in \sigma\}$ is an antichain.

Problem 5. Suppose that $M \models \kappa^{\omega} = \kappa$, and let G be $Add(\omega, \kappa)$ -generic over M. Show that $M[G] \models 2^{\omega} = \kappa$.

Hint: we already showed that $M[G] \models 2^{\omega} \ge \kappa$. For the other direction, argue that it is enough to consider the possible number of nice names for subsets of ω . I.e. for any $a \subset \omega$ in M[G], show there is a nice name \dot{a} such that $\dot{a}_G = a$. Then use the c.c.c. to compute the number of nice names.

Note that in view of the last problem, we can make 2^{ω} be any κ with $cf(\kappa) > \omega$. This is optimal, since by a corollary of Konig's lemma we know that $cf(2^{\omega}) > \omega$.